grafana.MachineLearningJob
Explore with Pulumi AI
A job defines the queries and model parameters for a machine learning task.
See the Grafana Cloud docs for more information
on available hyperparameters for use in the hyper_params
field.
Example Usage
Basic Forecast
This forecast uses a Prometheus datasource, where the source query is defined in the expr
field of the query_params
attribute.
Other datasources are supported, but the structure query_params
may differ.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const foo = new grafana.oss.DataSource("foo", {
type: "prometheus",
name: "prometheus-ds-test",
uid: "prometheus-ds-test-uid",
url: "https://my-instance.com",
basicAuthEnabled: true,
basicAuthUsername: "username",
jsonDataEncoded: JSON.stringify({
httpMethod: "POST",
prometheusType: "Mimir",
prometheusVersion: "2.4.0",
}),
secureJsonDataEncoded: JSON.stringify({
basicAuthPassword: "password",
}),
});
const testJob = new grafana.machinelearning.Job("test_job", {
name: "Test Job",
metric: "tf_test_job",
datasourceType: "prometheus",
datasourceUid: foo.uid,
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
});
import pulumi
import json
import pulumiverse_grafana as grafana
foo = grafana.oss.DataSource("foo",
type="prometheus",
name="prometheus-ds-test",
uid="prometheus-ds-test-uid",
url="https://my-instance.com",
basic_auth_enabled=True,
basic_auth_username="username",
json_data_encoded=json.dumps({
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
}),
secure_json_data_encoded=json.dumps({
"basicAuthPassword": "password",
}))
test_job = grafana.machine_learning.Job("test_job",
name="Test Job",
metric="tf_test_job",
datasource_type="prometheus",
datasource_uid=foo.uid,
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
})
package main
import (
"encoding/json"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machinelearning"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/oss"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
tmpJSON0, err := json.Marshal(map[string]interface{}{
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
tmpJSON1, err := json.Marshal(map[string]interface{}{
"basicAuthPassword": "password",
})
if err != nil {
return err
}
json1 := string(tmpJSON1)
foo, err := oss.NewDataSource(ctx, "foo", &oss.DataSourceArgs{
Type: pulumi.String("prometheus"),
Name: pulumi.String("prometheus-ds-test"),
Uid: pulumi.String("prometheus-ds-test-uid"),
Url: pulumi.String("https://my-instance.com"),
BasicAuthEnabled: pulumi.Bool(true),
BasicAuthUsername: pulumi.String("username"),
JsonDataEncoded: pulumi.String(json0),
SecureJsonDataEncoded: pulumi.String(json1),
})
if err != nil {
return err
}
_, err = machinelearning.NewJob(ctx, "test_job", &machinelearning.JobArgs{
Name: pulumi.String("Test Job"),
Metric: pulumi.String("tf_test_job"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: foo.Uid,
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var foo = new Grafana.Oss.DataSource("foo", new()
{
Type = "prometheus",
Name = "prometheus-ds-test",
Uid = "prometheus-ds-test-uid",
Url = "https://my-instance.com",
BasicAuthEnabled = true,
BasicAuthUsername = "username",
JsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["httpMethod"] = "POST",
["prometheusType"] = "Mimir",
["prometheusVersion"] = "2.4.0",
}),
SecureJsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["basicAuthPassword"] = "password",
}),
});
var testJob = new Grafana.MachineLearning.Job("test_job", new()
{
Name = "Test Job",
Metric = "tf_test_job",
DatasourceType = "prometheus",
DatasourceUid = foo.Uid,
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.oss.DataSource;
import com.pulumi.grafana.oss.DataSourceArgs;
import com.pulumi.grafana.machineLearning.Job;
import com.pulumi.grafana.machineLearning.JobArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var foo = new DataSource("foo", DataSourceArgs.builder()
.type("prometheus")
.name("prometheus-ds-test")
.uid("prometheus-ds-test-uid")
.url("https://my-instance.com")
.basicAuthEnabled(true)
.basicAuthUsername("username")
.jsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("httpMethod", "POST"),
jsonProperty("prometheusType", "Mimir"),
jsonProperty("prometheusVersion", "2.4.0")
)))
.secureJsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("basicAuthPassword", "password")
)))
.build());
var testJob = new Job("testJob", JobArgs.builder()
.name("Test Job")
.metric("tf_test_job")
.datasourceType("prometheus")
.datasourceUid(foo.uid())
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.build());
}
}
resources:
foo:
type: grafana:oss:DataSource
properties:
type: prometheus
name: prometheus-ds-test
uid: prometheus-ds-test-uid
url: https://my-instance.com
basicAuthEnabled: true
basicAuthUsername: username
jsonDataEncoded:
fn::toJSON:
httpMethod: POST
prometheusType: Mimir
prometheusVersion: 2.4.0
secureJsonDataEncoded:
fn::toJSON:
basicAuthPassword: password
testJob:
type: grafana:machineLearning:Job
name: test_job
properties:
name: Test Job
metric: tf_test_job
datasourceType: prometheus
datasourceUid: ${foo.uid}
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
Tuned Forecast
This forecast has tuned hyperparameters to improve the accuracy of the model.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const foo = new grafana.oss.DataSource("foo", {
type: "prometheus",
name: "prometheus-ds-test",
uid: "prometheus-ds-test-uid",
url: "https://my-instance.com",
basicAuthEnabled: true,
basicAuthUsername: "username",
jsonDataEncoded: JSON.stringify({
httpMethod: "POST",
prometheusType: "Mimir",
prometheusVersion: "2.4.0",
}),
secureJsonDataEncoded: JSON.stringify({
basicAuthPassword: "password",
}),
});
const testJob = new grafana.machinelearning.Job("test_job", {
name: "Test Job",
metric: "tf_test_job",
datasourceType: "prometheus",
datasourceUid: foo.uid,
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
hyperParams: {
daily_seasonality: "15",
weekly_seasonality: "10",
},
customLabels: {
example_label: "example_value",
},
});
import pulumi
import json
import pulumiverse_grafana as grafana
foo = grafana.oss.DataSource("foo",
type="prometheus",
name="prometheus-ds-test",
uid="prometheus-ds-test-uid",
url="https://my-instance.com",
basic_auth_enabled=True,
basic_auth_username="username",
json_data_encoded=json.dumps({
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
}),
secure_json_data_encoded=json.dumps({
"basicAuthPassword": "password",
}))
test_job = grafana.machine_learning.Job("test_job",
name="Test Job",
metric="tf_test_job",
datasource_type="prometheus",
datasource_uid=foo.uid,
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
},
hyper_params={
"daily_seasonality": "15",
"weekly_seasonality": "10",
},
custom_labels={
"example_label": "example_value",
})
package main
import (
"encoding/json"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machinelearning"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/oss"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
tmpJSON0, err := json.Marshal(map[string]interface{}{
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
tmpJSON1, err := json.Marshal(map[string]interface{}{
"basicAuthPassword": "password",
})
if err != nil {
return err
}
json1 := string(tmpJSON1)
foo, err := oss.NewDataSource(ctx, "foo", &oss.DataSourceArgs{
Type: pulumi.String("prometheus"),
Name: pulumi.String("prometheus-ds-test"),
Uid: pulumi.String("prometheus-ds-test-uid"),
Url: pulumi.String("https://my-instance.com"),
BasicAuthEnabled: pulumi.Bool(true),
BasicAuthUsername: pulumi.String("username"),
JsonDataEncoded: pulumi.String(json0),
SecureJsonDataEncoded: pulumi.String(json1),
})
if err != nil {
return err
}
_, err = machinelearning.NewJob(ctx, "test_job", &machinelearning.JobArgs{
Name: pulumi.String("Test Job"),
Metric: pulumi.String("tf_test_job"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: foo.Uid,
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
HyperParams: pulumi.StringMap{
"daily_seasonality": pulumi.String("15"),
"weekly_seasonality": pulumi.String("10"),
},
CustomLabels: pulumi.StringMap{
"example_label": pulumi.String("example_value"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var foo = new Grafana.Oss.DataSource("foo", new()
{
Type = "prometheus",
Name = "prometheus-ds-test",
Uid = "prometheus-ds-test-uid",
Url = "https://my-instance.com",
BasicAuthEnabled = true,
BasicAuthUsername = "username",
JsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["httpMethod"] = "POST",
["prometheusType"] = "Mimir",
["prometheusVersion"] = "2.4.0",
}),
SecureJsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["basicAuthPassword"] = "password",
}),
});
var testJob = new Grafana.MachineLearning.Job("test_job", new()
{
Name = "Test Job",
Metric = "tf_test_job",
DatasourceType = "prometheus",
DatasourceUid = foo.Uid,
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
HyperParams =
{
{ "daily_seasonality", "15" },
{ "weekly_seasonality", "10" },
},
CustomLabels =
{
{ "example_label", "example_value" },
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.oss.DataSource;
import com.pulumi.grafana.oss.DataSourceArgs;
import com.pulumi.grafana.machineLearning.Job;
import com.pulumi.grafana.machineLearning.JobArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var foo = new DataSource("foo", DataSourceArgs.builder()
.type("prometheus")
.name("prometheus-ds-test")
.uid("prometheus-ds-test-uid")
.url("https://my-instance.com")
.basicAuthEnabled(true)
.basicAuthUsername("username")
.jsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("httpMethod", "POST"),
jsonProperty("prometheusType", "Mimir"),
jsonProperty("prometheusVersion", "2.4.0")
)))
.secureJsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("basicAuthPassword", "password")
)))
.build());
var testJob = new Job("testJob", JobArgs.builder()
.name("Test Job")
.metric("tf_test_job")
.datasourceType("prometheus")
.datasourceUid(foo.uid())
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.hyperParams(Map.ofEntries(
Map.entry("daily_seasonality", 15),
Map.entry("weekly_seasonality", 10)
))
.customLabels(Map.of("example_label", "example_value"))
.build());
}
}
resources:
foo:
type: grafana:oss:DataSource
properties:
type: prometheus
name: prometheus-ds-test
uid: prometheus-ds-test-uid
url: https://my-instance.com
basicAuthEnabled: true
basicAuthUsername: username
jsonDataEncoded:
fn::toJSON:
httpMethod: POST
prometheusType: Mimir
prometheusVersion: 2.4.0
secureJsonDataEncoded:
fn::toJSON:
basicAuthPassword: password
testJob:
type: grafana:machineLearning:Job
name: test_job
properties:
name: Test Job
metric: tf_test_job
datasourceType: prometheus
datasourceUid: ${foo.uid}
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
hyperParams:
daily_seasonality: 15
weekly_seasonality: 10
customLabels:
example_label: example_value
Rescaled Forecast
This forecast has had the data transformed using a power transformation in order to avoid negative lower predictions.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const foo = new grafana.oss.DataSource("foo", {
type: "prometheus",
name: "prometheus-ds-test",
uid: "prometheus-ds-test-uid",
url: "https://my-instance.com",
basicAuthEnabled: true,
basicAuthUsername: "username",
jsonDataEncoded: JSON.stringify({
httpMethod: "POST",
prometheusType: "Mimir",
prometheusVersion: "2.4.0",
}),
secureJsonDataEncoded: JSON.stringify({
basicAuthPassword: "password",
}),
});
const testJob = new grafana.machinelearning.Job("test_job", {
name: "Test Job",
metric: "tf_test_job",
datasourceType: "prometheus",
datasourceUid: foo.uid,
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
hyperParams: {
transformation_id: "power",
},
});
import pulumi
import json
import pulumiverse_grafana as grafana
foo = grafana.oss.DataSource("foo",
type="prometheus",
name="prometheus-ds-test",
uid="prometheus-ds-test-uid",
url="https://my-instance.com",
basic_auth_enabled=True,
basic_auth_username="username",
json_data_encoded=json.dumps({
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
}),
secure_json_data_encoded=json.dumps({
"basicAuthPassword": "password",
}))
test_job = grafana.machine_learning.Job("test_job",
name="Test Job",
metric="tf_test_job",
datasource_type="prometheus",
datasource_uid=foo.uid,
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
},
hyper_params={
"transformation_id": "power",
})
package main
import (
"encoding/json"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machinelearning"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/oss"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
tmpJSON0, err := json.Marshal(map[string]interface{}{
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
tmpJSON1, err := json.Marshal(map[string]interface{}{
"basicAuthPassword": "password",
})
if err != nil {
return err
}
json1 := string(tmpJSON1)
foo, err := oss.NewDataSource(ctx, "foo", &oss.DataSourceArgs{
Type: pulumi.String("prometheus"),
Name: pulumi.String("prometheus-ds-test"),
Uid: pulumi.String("prometheus-ds-test-uid"),
Url: pulumi.String("https://my-instance.com"),
BasicAuthEnabled: pulumi.Bool(true),
BasicAuthUsername: pulumi.String("username"),
JsonDataEncoded: pulumi.String(json0),
SecureJsonDataEncoded: pulumi.String(json1),
})
if err != nil {
return err
}
_, err = machinelearning.NewJob(ctx, "test_job", &machinelearning.JobArgs{
Name: pulumi.String("Test Job"),
Metric: pulumi.String("tf_test_job"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: foo.Uid,
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
HyperParams: pulumi.StringMap{
"transformation_id": pulumi.String("power"),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var foo = new Grafana.Oss.DataSource("foo", new()
{
Type = "prometheus",
Name = "prometheus-ds-test",
Uid = "prometheus-ds-test-uid",
Url = "https://my-instance.com",
BasicAuthEnabled = true,
BasicAuthUsername = "username",
JsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["httpMethod"] = "POST",
["prometheusType"] = "Mimir",
["prometheusVersion"] = "2.4.0",
}),
SecureJsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["basicAuthPassword"] = "password",
}),
});
var testJob = new Grafana.MachineLearning.Job("test_job", new()
{
Name = "Test Job",
Metric = "tf_test_job",
DatasourceType = "prometheus",
DatasourceUid = foo.Uid,
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
HyperParams =
{
{ "transformation_id", "power" },
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.oss.DataSource;
import com.pulumi.grafana.oss.DataSourceArgs;
import com.pulumi.grafana.machineLearning.Job;
import com.pulumi.grafana.machineLearning.JobArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var foo = new DataSource("foo", DataSourceArgs.builder()
.type("prometheus")
.name("prometheus-ds-test")
.uid("prometheus-ds-test-uid")
.url("https://my-instance.com")
.basicAuthEnabled(true)
.basicAuthUsername("username")
.jsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("httpMethod", "POST"),
jsonProperty("prometheusType", "Mimir"),
jsonProperty("prometheusVersion", "2.4.0")
)))
.secureJsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("basicAuthPassword", "password")
)))
.build());
var testJob = new Job("testJob", JobArgs.builder()
.name("Test Job")
.metric("tf_test_job")
.datasourceType("prometheus")
.datasourceUid(foo.uid())
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.hyperParams(Map.of("transformation_id", "power"))
.build());
}
}
resources:
foo:
type: grafana:oss:DataSource
properties:
type: prometheus
name: prometheus-ds-test
uid: prometheus-ds-test-uid
url: https://my-instance.com
basicAuthEnabled: true
basicAuthUsername: username
jsonDataEncoded:
fn::toJSON:
httpMethod: POST
prometheusType: Mimir
prometheusVersion: 2.4.0
secureJsonDataEncoded:
fn::toJSON:
basicAuthPassword: password
testJob:
type: grafana:machineLearning:Job
name: test_job
properties:
name: Test Job
metric: tf_test_job
datasourceType: prometheus
datasourceUid: ${foo.uid}
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
hyperParams:
transformation_id: power
Forecast with Holidays
This forecast has holidays which will be taken into account when training the model.
import * as pulumi from "@pulumi/pulumi";
import * as grafana from "@pulumiverse/grafana";
const foo = new grafana.oss.DataSource("foo", {
type: "prometheus",
name: "prometheus-ds-test",
uid: "prometheus-ds-test-uid",
url: "https://my-instance.com",
basicAuthEnabled: true,
basicAuthUsername: "username",
jsonDataEncoded: JSON.stringify({
httpMethod: "POST",
prometheusType: "Mimir",
prometheusVersion: "2.4.0",
}),
secureJsonDataEncoded: JSON.stringify({
basicAuthPassword: "password",
}),
});
const testHoliday = new grafana.machinelearning.Holiday("test_holiday", {
name: "Test Holiday",
customPeriods: [{
name: "First of January",
startTime: "2023-01-01T00:00:00Z",
endTime: "2023-01-02T00:00:00Z",
}],
});
const testJob = new grafana.machinelearning.Job("test_job", {
name: "Test Job",
metric: "tf_test_job",
datasourceType: "prometheus",
datasourceUid: foo.uid,
queryParams: {
expr: "grafanacloud_grafana_instance_active_user_count",
},
holidays: [testHoliday.id],
});
import pulumi
import json
import pulumiverse_grafana as grafana
foo = grafana.oss.DataSource("foo",
type="prometheus",
name="prometheus-ds-test",
uid="prometheus-ds-test-uid",
url="https://my-instance.com",
basic_auth_enabled=True,
basic_auth_username="username",
json_data_encoded=json.dumps({
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
}),
secure_json_data_encoded=json.dumps({
"basicAuthPassword": "password",
}))
test_holiday = grafana.machine_learning.Holiday("test_holiday",
name="Test Holiday",
custom_periods=[{
"name": "First of January",
"start_time": "2023-01-01T00:00:00Z",
"end_time": "2023-01-02T00:00:00Z",
}])
test_job = grafana.machine_learning.Job("test_job",
name="Test Job",
metric="tf_test_job",
datasource_type="prometheus",
datasource_uid=foo.uid,
query_params={
"expr": "grafanacloud_grafana_instance_active_user_count",
},
holidays=[test_holiday.id])
package main
import (
"encoding/json"
"github.com/pulumi/pulumi/sdk/v3/go/pulumi"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/machinelearning"
"github.com/pulumiverse/pulumi-grafana/sdk/go/grafana/oss"
)
func main() {
pulumi.Run(func(ctx *pulumi.Context) error {
tmpJSON0, err := json.Marshal(map[string]interface{}{
"httpMethod": "POST",
"prometheusType": "Mimir",
"prometheusVersion": "2.4.0",
})
if err != nil {
return err
}
json0 := string(tmpJSON0)
tmpJSON1, err := json.Marshal(map[string]interface{}{
"basicAuthPassword": "password",
})
if err != nil {
return err
}
json1 := string(tmpJSON1)
foo, err := oss.NewDataSource(ctx, "foo", &oss.DataSourceArgs{
Type: pulumi.String("prometheus"),
Name: pulumi.String("prometheus-ds-test"),
Uid: pulumi.String("prometheus-ds-test-uid"),
Url: pulumi.String("https://my-instance.com"),
BasicAuthEnabled: pulumi.Bool(true),
BasicAuthUsername: pulumi.String("username"),
JsonDataEncoded: pulumi.String(json0),
SecureJsonDataEncoded: pulumi.String(json1),
})
if err != nil {
return err
}
testHoliday, err := machinelearning.NewHoliday(ctx, "test_holiday", &machinelearning.HolidayArgs{
Name: pulumi.String("Test Holiday"),
CustomPeriods: machinelearning.HolidayCustomPeriodArray{
&machinelearning.HolidayCustomPeriodArgs{
Name: pulumi.String("First of January"),
StartTime: pulumi.String("2023-01-01T00:00:00Z"),
EndTime: pulumi.String("2023-01-02T00:00:00Z"),
},
},
})
if err != nil {
return err
}
_, err = machinelearning.NewJob(ctx, "test_job", &machinelearning.JobArgs{
Name: pulumi.String("Test Job"),
Metric: pulumi.String("tf_test_job"),
DatasourceType: pulumi.String("prometheus"),
DatasourceUid: foo.Uid,
QueryParams: pulumi.StringMap{
"expr": pulumi.String("grafanacloud_grafana_instance_active_user_count"),
},
Holidays: pulumi.StringArray{
testHoliday.ID(),
},
})
if err != nil {
return err
}
return nil
})
}
using System.Collections.Generic;
using System.Linq;
using System.Text.Json;
using Pulumi;
using Grafana = Pulumiverse.Grafana;
return await Deployment.RunAsync(() =>
{
var foo = new Grafana.Oss.DataSource("foo", new()
{
Type = "prometheus",
Name = "prometheus-ds-test",
Uid = "prometheus-ds-test-uid",
Url = "https://my-instance.com",
BasicAuthEnabled = true,
BasicAuthUsername = "username",
JsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["httpMethod"] = "POST",
["prometheusType"] = "Mimir",
["prometheusVersion"] = "2.4.0",
}),
SecureJsonDataEncoded = JsonSerializer.Serialize(new Dictionary<string, object?>
{
["basicAuthPassword"] = "password",
}),
});
var testHoliday = new Grafana.MachineLearning.Holiday("test_holiday", new()
{
Name = "Test Holiday",
CustomPeriods = new[]
{
new Grafana.MachineLearning.Inputs.HolidayCustomPeriodArgs
{
Name = "First of January",
StartTime = "2023-01-01T00:00:00Z",
EndTime = "2023-01-02T00:00:00Z",
},
},
});
var testJob = new Grafana.MachineLearning.Job("test_job", new()
{
Name = "Test Job",
Metric = "tf_test_job",
DatasourceType = "prometheus",
DatasourceUid = foo.Uid,
QueryParams =
{
{ "expr", "grafanacloud_grafana_instance_active_user_count" },
},
Holidays = new[]
{
testHoliday.Id,
},
});
});
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.grafana.oss.DataSource;
import com.pulumi.grafana.oss.DataSourceArgs;
import com.pulumi.grafana.machineLearning.Holiday;
import com.pulumi.grafana.machineLearning.HolidayArgs;
import com.pulumi.grafana.machineLearning.inputs.HolidayCustomPeriodArgs;
import com.pulumi.grafana.machineLearning.Job;
import com.pulumi.grafana.machineLearning.JobArgs;
import static com.pulumi.codegen.internal.Serialization.*;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
public static void main(String[] args) {
Pulumi.run(App::stack);
}
public static void stack(Context ctx) {
var foo = new DataSource("foo", DataSourceArgs.builder()
.type("prometheus")
.name("prometheus-ds-test")
.uid("prometheus-ds-test-uid")
.url("https://my-instance.com")
.basicAuthEnabled(true)
.basicAuthUsername("username")
.jsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("httpMethod", "POST"),
jsonProperty("prometheusType", "Mimir"),
jsonProperty("prometheusVersion", "2.4.0")
)))
.secureJsonDataEncoded(serializeJson(
jsonObject(
jsonProperty("basicAuthPassword", "password")
)))
.build());
var testHoliday = new Holiday("testHoliday", HolidayArgs.builder()
.name("Test Holiday")
.customPeriods(HolidayCustomPeriodArgs.builder()
.name("First of January")
.startTime("2023-01-01T00:00:00Z")
.endTime("2023-01-02T00:00:00Z")
.build())
.build());
var testJob = new Job("testJob", JobArgs.builder()
.name("Test Job")
.metric("tf_test_job")
.datasourceType("prometheus")
.datasourceUid(foo.uid())
.queryParams(Map.of("expr", "grafanacloud_grafana_instance_active_user_count"))
.holidays(testHoliday.id())
.build());
}
}
resources:
foo:
type: grafana:oss:DataSource
properties:
type: prometheus
name: prometheus-ds-test
uid: prometheus-ds-test-uid
url: https://my-instance.com
basicAuthEnabled: true
basicAuthUsername: username
jsonDataEncoded:
fn::toJSON:
httpMethod: POST
prometheusType: Mimir
prometheusVersion: 2.4.0
secureJsonDataEncoded:
fn::toJSON:
basicAuthPassword: password
testHoliday:
type: grafana:machineLearning:Holiday
name: test_holiday
properties:
name: Test Holiday
customPeriods:
- name: First of January
startTime: 2023-01-01T00:00:00Z
endTime: 2023-01-02T00:00:00Z
testJob:
type: grafana:machineLearning:Job
name: test_job
properties:
name: Test Job
metric: tf_test_job
datasourceType: prometheus
datasourceUid: ${foo.uid}
queryParams:
expr: grafanacloud_grafana_instance_active_user_count
holidays:
- ${testHoliday.id}
Create MachineLearningJob Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new MachineLearningJob(name: string, args: MachineLearningJobArgs, opts?: CustomResourceOptions);
@overload
def MachineLearningJob(resource_name: str,
args: MachineLearningJobArgs,
opts: Optional[ResourceOptions] = None)
@overload
def MachineLearningJob(resource_name: str,
opts: Optional[ResourceOptions] = None,
custom_labels: Optional[Mapping[str, str]] = None,
datasource_type: Optional[str] = None,
datasource_uid: Optional[str] = None,
description: Optional[str] = None,
holidays: Optional[Sequence[str]] = None,
hyper_params: Optional[Mapping[str, str]] = None,
interval: Optional[int] = None,
metric: Optional[str] = None,
name: Optional[str] = None,
query_params: Optional[Mapping[str, str]] = None,
training_window: Optional[int] = None)
func NewMachineLearningJob(ctx *Context, name string, args MachineLearningJobArgs, opts ...ResourceOption) (*MachineLearningJob, error)
public MachineLearningJob(string name, MachineLearningJobArgs args, CustomResourceOptions? opts = null)
public MachineLearningJob(String name, MachineLearningJobArgs args)
public MachineLearningJob(String name, MachineLearningJobArgs args, CustomResourceOptions options)
type: grafana:MachineLearningJob
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args MachineLearningJobArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args MachineLearningJobArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args MachineLearningJobArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args MachineLearningJobArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args MachineLearningJobArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
MachineLearningJob Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The MachineLearningJob resource accepts the following input properties:
- Datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- Datasource
Uid string - The uid of the datasource to query.
- Metric string
- The metric used to query the job results.
- Query
Params Dictionary<string, string> - An object representing the query params to query Grafana with.
- Custom
Labels Dictionary<string, string> - An object representing the custom labels added on the forecast.
- Description string
- A description of the job.
- Holidays List<string>
- A list of holiday IDs or names to take into account when training the model.
- Hyper
Params Dictionary<string, string> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- Interval int
- The data interval in seconds to train the data on.
- Name string
- The name of the job.
- Training
Window int - The data interval in seconds to train the data on.
- Datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- Datasource
Uid string - The uid of the datasource to query.
- Metric string
- The metric used to query the job results.
- Query
Params map[string]string - An object representing the query params to query Grafana with.
- Custom
Labels map[string]string - An object representing the custom labels added on the forecast.
- Description string
- A description of the job.
- Holidays []string
- A list of holiday IDs or names to take into account when training the model.
- Hyper
Params map[string]string - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- Interval int
- The data interval in seconds to train the data on.
- Name string
- The name of the job.
- Training
Window int - The data interval in seconds to train the data on.
- datasource
Type String - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid String - The uid of the datasource to query.
- metric String
- The metric used to query the job results.
- query
Params Map<String,String> - An object representing the query params to query Grafana with.
- custom
Labels Map<String,String> - An object representing the custom labels added on the forecast.
- description String
- A description of the job.
- holidays List<String>
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params Map<String,String> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval Integer
- The data interval in seconds to train the data on.
- name String
- The name of the job.
- training
Window Integer - The data interval in seconds to train the data on.
- datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid string - The uid of the datasource to query.
- metric string
- The metric used to query the job results.
- query
Params {[key: string]: string} - An object representing the query params to query Grafana with.
- custom
Labels {[key: string]: string} - An object representing the custom labels added on the forecast.
- description string
- A description of the job.
- holidays string[]
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params {[key: string]: string} - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval number
- The data interval in seconds to train the data on.
- name string
- The name of the job.
- training
Window number - The data interval in seconds to train the data on.
- datasource_
type str - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource_
uid str - The uid of the datasource to query.
- metric str
- The metric used to query the job results.
- query_
params Mapping[str, str] - An object representing the query params to query Grafana with.
- custom_
labels Mapping[str, str] - An object representing the custom labels added on the forecast.
- description str
- A description of the job.
- holidays Sequence[str]
- A list of holiday IDs or names to take into account when training the model.
- hyper_
params Mapping[str, str] - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval int
- The data interval in seconds to train the data on.
- name str
- The name of the job.
- training_
window int - The data interval in seconds to train the data on.
- datasource
Type String - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid String - The uid of the datasource to query.
- metric String
- The metric used to query the job results.
- query
Params Map<String> - An object representing the query params to query Grafana with.
- custom
Labels Map<String> - An object representing the custom labels added on the forecast.
- description String
- A description of the job.
- holidays List<String>
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params Map<String> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval Number
- The data interval in seconds to train the data on.
- name String
- The name of the job.
- training
Window Number - The data interval in seconds to train the data on.
Outputs
All input properties are implicitly available as output properties. Additionally, the MachineLearningJob resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Look up Existing MachineLearningJob Resource
Get an existing MachineLearningJob resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: MachineLearningJobState, opts?: CustomResourceOptions): MachineLearningJob
@staticmethod
def get(resource_name: str,
id: str,
opts: Optional[ResourceOptions] = None,
custom_labels: Optional[Mapping[str, str]] = None,
datasource_type: Optional[str] = None,
datasource_uid: Optional[str] = None,
description: Optional[str] = None,
holidays: Optional[Sequence[str]] = None,
hyper_params: Optional[Mapping[str, str]] = None,
interval: Optional[int] = None,
metric: Optional[str] = None,
name: Optional[str] = None,
query_params: Optional[Mapping[str, str]] = None,
training_window: Optional[int] = None) -> MachineLearningJob
func GetMachineLearningJob(ctx *Context, name string, id IDInput, state *MachineLearningJobState, opts ...ResourceOption) (*MachineLearningJob, error)
public static MachineLearningJob Get(string name, Input<string> id, MachineLearningJobState? state, CustomResourceOptions? opts = null)
public static MachineLearningJob get(String name, Output<String> id, MachineLearningJobState state, CustomResourceOptions options)
resources: _: type: grafana:MachineLearningJob get: id: ${id}
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Custom
Labels Dictionary<string, string> - An object representing the custom labels added on the forecast.
- Datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- Datasource
Uid string - The uid of the datasource to query.
- Description string
- A description of the job.
- Holidays List<string>
- A list of holiday IDs or names to take into account when training the model.
- Hyper
Params Dictionary<string, string> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- Interval int
- The data interval in seconds to train the data on.
- Metric string
- The metric used to query the job results.
- Name string
- The name of the job.
- Query
Params Dictionary<string, string> - An object representing the query params to query Grafana with.
- Training
Window int - The data interval in seconds to train the data on.
- Custom
Labels map[string]string - An object representing the custom labels added on the forecast.
- Datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- Datasource
Uid string - The uid of the datasource to query.
- Description string
- A description of the job.
- Holidays []string
- A list of holiday IDs or names to take into account when training the model.
- Hyper
Params map[string]string - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- Interval int
- The data interval in seconds to train the data on.
- Metric string
- The metric used to query the job results.
- Name string
- The name of the job.
- Query
Params map[string]string - An object representing the query params to query Grafana with.
- Training
Window int - The data interval in seconds to train the data on.
- custom
Labels Map<String,String> - An object representing the custom labels added on the forecast.
- datasource
Type String - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid String - The uid of the datasource to query.
- description String
- A description of the job.
- holidays List<String>
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params Map<String,String> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval Integer
- The data interval in seconds to train the data on.
- metric String
- The metric used to query the job results.
- name String
- The name of the job.
- query
Params Map<String,String> - An object representing the query params to query Grafana with.
- training
Window Integer - The data interval in seconds to train the data on.
- custom
Labels {[key: string]: string} - An object representing the custom labels added on the forecast.
- datasource
Type string - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid string - The uid of the datasource to query.
- description string
- A description of the job.
- holidays string[]
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params {[key: string]: string} - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval number
- The data interval in seconds to train the data on.
- metric string
- The metric used to query the job results.
- name string
- The name of the job.
- query
Params {[key: string]: string} - An object representing the query params to query Grafana with.
- training
Window number - The data interval in seconds to train the data on.
- custom_
labels Mapping[str, str] - An object representing the custom labels added on the forecast.
- datasource_
type str - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource_
uid str - The uid of the datasource to query.
- description str
- A description of the job.
- holidays Sequence[str]
- A list of holiday IDs or names to take into account when training the model.
- hyper_
params Mapping[str, str] - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval int
- The data interval in seconds to train the data on.
- metric str
- The metric used to query the job results.
- name str
- The name of the job.
- query_
params Mapping[str, str] - An object representing the query params to query Grafana with.
- training_
window int - The data interval in seconds to train the data on.
- custom
Labels Map<String> - An object representing the custom labels added on the forecast.
- datasource
Type String - The type of datasource being queried. Currently allowed values are prometheus, graphite, loki, postgres, and datadog.
- datasource
Uid String - The uid of the datasource to query.
- description String
- A description of the job.
- holidays List<String>
- A list of holiday IDs or names to take into account when training the model.
- hyper
Params Map<String> - The hyperparameters used to fine tune the algorithm. See https://grafana.com/docs/grafana-cloud/alerting-and-irm/machine-learning/forecasts/models/ for the full list of available hyperparameters.
- interval Number
- The data interval in seconds to train the data on.
- metric String
- The metric used to query the job results.
- name String
- The name of the job.
- query
Params Map<String> - An object representing the query params to query Grafana with.
- training
Window Number - The data interval in seconds to train the data on.
Import
$ pulumi import grafana:index/machineLearningJob:MachineLearningJob name "{{ id }}"
To learn more about importing existing cloud resources, see Importing resources.
Package Details
- Repository
- grafana pulumiverse/pulumi-grafana
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the
grafana
Terraform Provider.